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A Conceptual Specimen Architecture for an Intelligent Archive in a 
Knowledge Building System  

Abstract  

For the past two years, NASA s Intelligent Systems Project, a part of the Computing, 
Information and Communications Technology Program, has sponsored research in a 
number of technologies broadly related to the theme of Intelligent Data Understanding 
(IDU).  One of these research projects concerns Intelligent Archives, with an emphasis on 
the role of an Intelligent Archive in the context of a Knowledge Building Systems (IA-
KBS).  After defining a conceptual IA-KBS architecture, the IA-KBS project focused on 
the potential for the algorithms and technologies being developed by other IDU 
researchers to realize some of the envisioned IA-KBS capabilities.  To that end, it has 
been proposed that an IA test bed be developed which would clearly demonstrate the 
applicability and utility of the various research efforts sponsored by the IDU area of the 
IS project.  Previous work surveyed the various IDU research projects and identified 
opportunities for their associated algorithms, technologies and architectures to contribute 
to such a test bed.  The most important conclusion of that paper was that, depending on 
the selected scenario, any one of the research projects reviewed could usefully be 
included in an appropriately architected test bed environment.  

The current paper carries this work forward by proposing a Conceptual Specimen 
Architecture for the IA/KBS.  The paper has four main sections and a brief conclusion.  
The first section focuses on required functionality, and shows how the IDU research and 
algorithms logically and functionally fit within the CSA.  The second section reviews the 
current state-of-the-art in cyberinfrastructure technologies, concluding that the necessary 
components are available to provide the necessary system-level interfaces.  The third 
section proposes three compelling use cases, illustrating by specific example how the 
IDU research, implemented within an Intelligent Archive, can support KBS objectives.  
The fourth section represents a transition to the next phase of research by describing an 
achievable software architecture for the IA-KBS within which the capabilities described 
in the first three sections could be implemented.  The paper concludes that a solid 
technical basis exists to support prototyping and demonstration of the key IA/KBS 
technologies.  
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1.  Functional Decomposition of the KBS/IA  

The purpose of this section is to present a top-level Functional Block Diagram of a 
Conceptual Specimen Architecture for an Intelligent Archive operating as or within a 
larger Knowledge Building System.  

The discussion will be divided into 12 parts.  We begin, in this introduction, with the top-
level Functional Block Diagram (FDB), showing the major components (of which there 
are eight) as well as types of internal and external users and key data structures.  In the 
final section, we will review the Intelligent Data Understanding research projects and 
associated algorithms examined in previous work [9], and show how these algorithms 
map onto the FBD  that is, which components and sub-components they might be able 
to support.  

Below is shown the full Top Level Functional Block Diagram for the KBS/IA.   

The numbering scheme within the FBD corresponds to the following sections, in which 
each of the eight top level functional components, and sub-components, will be described 
and discussed (§1.1 

 

§1.8), along with data structures (§1.9), users (§1.10, §1.11), and 
applicable IS/IDU research programs and algorithms (§1.12)  

Because this is a top-level functional diagram, the explicit dependencies as well as data 
movement and the passing of control are not easily represented.  These matters will be 
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touched upon to some extent in the discussion that follows; and to assist the reader, we 
have provided a diagram of Functional Dependencies (see Table below)  between the 
components and sub-components that may help to clarify the underlying relationships.  
These will also become clearer when we discuss, in detail, example Use Cases in Section 
3 below.   

1.1  System Control and Administration [SC&A]  

This function manages and optimizes the work of the other functional components.  It 
keeps track of the state of the components, the work queues, and the hardware resources 
that have been assigned to support the components.  It also has models (developed using 
Data Mining on usage logs) for stochastically estimating future loading and developing 
optimized work plans.  This also comprises the tasks of developing, validating and 
registering the various knowledge building algorithms that other functional components 
rely on to perform their tasks.  

1.1.1  Current and Estimated System Status [STAT]  

This function keeps track of the current state of the system:  what jobs are 
running, what hardware resources are utilized and available, what current 
networking loading is, etc.  It also has the capability to predict future loading 
using KBS models developed from data mining system usage logs.  It 
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accomplishes this by using the services of I&KB algorithms within the DM 
functional component.  

1.1.2  System Optimization [OPT]  

This function is responsible for automatically optimizing system performance in 
accordance with current and predicted loading and prioritization models provided 
by administrative personnel.  We might imagine, for example, that this function 
uses Model Predictive Control (MPC) or related technologies to respond 
dynamically to uncertain events.  This function also provides optimization 
services to PTP to support distributed product generation and DM production.  

1.1.3  Algorithm Development and Validation [AD&V]  

This is where algorithms to be used by the various knowledge building 
components (DM, DQ, ED, etc.) are developed, validated, and registered.  This is 
a manually intensive process, and will typically require interactive monitoring and 
supervision by scientists and algorithm specialists.  This function can build 
training and test sets by utilizing other capabilities (e.g., CBR) in order to 
construct and optimize KBS algorithm performance.  This is also where the 
metadata describing the performance characteristics of each algorithm is 
constructed and entered (see §1.9.6).  

1.1.4  Other functionality not shown  

SC&A is where the user interfaces to monitor the system reside, and where 
parameters reflecting policy and priorities are entered and maintained.  One might 
imagine log data on cost, reliability, hardware and software configurations, 
installation and facilities diagrams, etc.  All of this standard system management 
and administration data and software resides in SC&A.   

1.2  Import, Export, and Web Interface [IE]  

This is a generic function required by any archive, intelligent or otherwise.  

1.2.1  Import [IMPT] 
This is the interface to the high performance input data stream from any sensor 
inputs to the IA.  

1.2.2  Export [EXPT]  

This interface to the high performance output network supplies large volumes of 
data to product subscribers and users and to their systems.  

1.2.3  Internet Interface [WWW] 
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This is where the web pages for the IA reside.  This includes the development and 
update of those pages, firewalls, and system security (user registration, 
authentication, access privileges, cost accounting, etc.).   

1.3  Data Mining [DM]  

This functional area is concerned with the application of information and knowledge 
building algorithms to large amounts of data resident in IA storage.  As such, it must 
support high volume data flows from and to DA resources.  The FDB shows a notional 
flow of information entering the DM functions, and knowledge flowing out.  It is also 
possible for DM to support flows that accept data (or even observations) as input, and 
that produce information (or even data) as output.  Thus, DM is seen to be a key 
functional component within the KBS conceptual architecture.  

1.3.1  Data Preparation [DPRP]  

Many data mining algorithms require a variety of reduction and transformation 
steps before the raw inputs, as taken directly from archive storage, are ready to 
be input to the KB algorithms.  This function may therefore utilize the services of 
a variety of other components:  data quality filtering, product generation (and 
distributed product generation via PTP), content based retrieval, etc.  The output 
of this function is typically not permanently stored, but is directly consumed by 
the DM algorithm that requested its services.  

1.3.2  Data Transforms [XFM]  

This function is where non-application-specific algorithms reside.  These 
algorithms transform the input data into a representation in some other basis 
which can then serve as raw input to other DM processes.  The outputs of XFM 
algorithms will often be permanently stored, and can be considered as a kind of 
secondary, or shadow, archive sitting beside the data as originally received from 
the input sensors.  Running XFM algorithms on data can (and often will) be done 
speculatively, betting that some as-yet-unknown DM process  (or user) will be 
able to find a use for the data as represented in this form.  Thus, in one mode of 
operation, XFM algorithms operate more or less continuously, and somewhat 
blindly, as background processes.  As will be seen below (§1.12.2, §1.12.11), 
IS/IDU research by both Tilton and Emerson fits well into this functional area.  
XFM may also be used by VP to generate product on demand, or by DPRP to 
prepare data (or information) for subsequent processing.  

1.3.3  Information and Knowledge Building Algorithms [I&KB]  

This is the beating heart of the KBS functionality  the place at which the 
various types of data mining and knowledge building algorithms are applied.  
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Many of the services provided by other components are expressly included so as 
to enable this component.  Algorithms are developed and validated (AD&V), 
scientific priorities are established, and an optimized (and dynamically re-
optimized) work flow is created and implemented (OPT).  Data is then prepared 
for input (DPRP), perhaps drawing on distributed resources (PTP), and 
implementing distributed versions of the DM algorithm (again, PTP).  The results 
of this process are then made directly available to users (EXPT or APIF), and 
may also become part of the permanent archive (DA).  

It is worth emphasizing a point glossed over above:  I&KB is where distributed 
data mining algorithms reside, but PTP is where the negotiations with other IA 
peers takes place, and OPT is where the optimized decisions are made about 
where, within the GRID, processing should take place.  In other words, efficient 
distributed data mining requires the close co-operation of I&KB, PTP, and OPT, 
as well of their counter-parts in other peer IA systems.   

1.4.  Event Detection [ED]  

As shown in the FBD, notionally we expect this functional component to accept data as 
input and produce information as output.  Thus, in the O 

 

D 

 

I 

 

K KBS hierarchy, 
ED will generally operate at a level below that of DM.  As such, ED focuses not so much 
on finding relationships as on extracting or identifying inherent characteristics or features 
via pattern matching.  Thus, the event which is detected is the presence of some feature 
within the data set being examined.  ED functions are capable of being applied to very 
large aggregations of data (for example, the real-time input data stream from the sensor 
sources) looking for such occurrences.  Key performance measures for these types of 
functions are (1) throughput and (2) Type I and Type II error rates (that is, false positives 
and false negatives).  As with other KBS functions, the algorithms used by ED will first 
undergo a development, validation, and registration process (AD&V), and will be 
invoked in an optimized fashion by SC&A control processes.    

1.4.1  Input Data Stream [IDS]  

This functional sub-component is integrally tied into the ingest process.  It thus 
provides a key service to near-real-time feed-back (FB) by detecting and 
reporting occurrences of interest (say) within a larger Sensor Web.  It also 
supports DQ/FILT by searching for patterns that may indicate bias or error.  

1.4.2  Content Based Retrieval [CBR]  

Here, the event of interest is some screening criteria to be used to down-select 
from a large data source a subset (presumably small) that satisfies a condition of 
interest.  Note that, in OODB terms, this function might be performed in a 
massively parallel way via methods stored locally within the data structure itself.  
Alternatively, the test may be located externally to the data, which passes under 
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the scrutiny of the filter (much as in IDS).  This function may also be instantiated 
as an ongoing back-ground process routinely generating metadata on large 
collections of data for possible as-yet-unspecified future use.   

1.5  Feed-back [FB]  

This functional component is the means by which the KBS/IA participates in near-real-
time processes that are largely external to it.  Event detection on the input data stream 
(IDS) is an important enabler; but FB also provides access, via PRDG and PTP, to the 
larger set of distributed archive resources and products.  

1.5.1  Interface to the Sensor Web  [SWIF]  

The idea of the Sensor Web is for heterogeneous sensing systems to dynamically 
co-operate in response to rapidly emerging collection opportunities.  A key aspect 
of this process is the detection of events within one sensor stream that could 
trigger re-tasking by that sensor or other co-operating sensors.  The services to 
support such functionality are provided to the Sensor Web via this component.  

1.5.2  Interface to Application Partner Decision Support Systems [APIF]  

Sensor systems can play a significant role as inputs to NASA Application Partners 
(such as FEMA, or the Weather Service).  Typically, the interface will be to 
automated Decision Support Systems maintained by those partners.  This 
functional component not only provides data and alerts to those systems; it also 
provides access to the services of the IA (including its distributed peers via PTP) 
as well as to the Sensor Web (via SWIF).  

1.5.3  Sensor Performance Feed-back [SPF]  

This interface provides feed-back to the input sensor regarding possible bias or 
other degradation of input product quality.  As such, it makes extensive us of DQ 
and IDS services.   

1.6  Data Quality [DQ]  

This functional component provides assurance to users of archived data and products that 
the delivered results are compatible, in pedigree and quality, with the expectations at the 
user, application, or system interface.  

1.6.1  Product MetaData [PMD]  

When a data product is to be used as input to a KBS algorithm (or other model or 
process), the scientific integrity of the result may depend upon the precise nature 
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of the production pedigree of that input data.  For example, models change over 
time as new features or modeling techniques are incorporated.  Hence, a product 
produced at one point in time using one version of a model may have different 
numerical or other characteristics from a similar (or similarly named) product 
generated at some other (earlier or later) time.  The purpose of the PMD 
functional component is to maintain the descriptive data structures (see §1.9.7) 
that capture this pedigree, and to enforce rules reflecting scientific or algorithmic 
dependencies and constraints involving these features.  

1.6.2  Apply Data Quality Filters [FILT]  

This is a special kind of event detection, where the event in question is the 
presence of some computable feature indicating the presence of a fault or 
discrepancy.  Hence, FILT will typically rely on ED services.  However, the input 
data need not be (for example) the input data stream (IDS), but could be any 
(perhaps very large) data set extracted from the archive.  

1.6.3  Data Mining Support Services [DMS]  

This is a special use of Data Quality functionality in which (for example) rule 
based induction algorithms are made more efficient by retraining them on sets 
where the data has been adjusted to remove outliers.  This process (see §1.12.10 
below) can be applied to any of a large variety of DM algorithms, and may be 
considered as a supporting service to assist in the process of algorithm 
development and validation (AD&V).   

1.7  Virtual Products [VP]  

This functional component consists of two major capabilities:  (1) the ability to generate 
products on demand; and (2) the functionality required to implement a distributed 
archive and distributed data mining services.  

1.7.1  Product Generation [PRDG]  

This functionality provides standard and specialized products to subscribers 
and/or to other KBS algorithms and functions.  If the product already exists (as 
the result, say, of the standard ingest process), then it is simply retrieved and 
shipped.  More interesting, however, is when the requested product does not 
already exist, but must be created.  The inputs to this process may be local or 
remote; and may be homogeneous or heterogeneous.  For example, fusion 
algorithms may combine heterogeneous inputs into a single unified output.  And 
the inputs to this fusion process may be held locally, or may reside at multiple 
distributed IA locations.  In the latter case, they must be brought together, and the 
fusion algorithm applied.  This example gives some indication of the type of 
processing this functional area provides.  PRDG works closely with DPRP and 



Conceptual Specimen Architecture  11 

with FILT, and may be called to supply inputs to other KBS algorithms and 
functions.  It also relies on the distributed services provided by PTP, and the 
production it initiates will be under the supervision and optimization of SC&A.  

1.7.2  Peer-to-Peer Services [PTP]  

This is one of the most complex, and important, functional components of the 
system.  It maintains all of the distributed aspects of the archiving function by 
co-operating with its peer IAs.  This includes such features as:  global search and 
retrieval (via globally maintained metadata and catalogs); distributed data mining; 
and distributed product generation.  We have placed PTP within the VP 
functional component because product is a unifying theme to the distributed 
aspect of the IA.  The idea is to shield users, and user processes, from details 
about (1) the location of input data sources and (2) the algorithms and models that 
are used to generate the desired products.  But this abstraction requires exactly the 
type of global search capability and distributed processing provided by PTP.  
PTP also works closely with OPT to determine where, within the GRID, a 
distributed computation (be it data mining or product generation) should best take 
place.  Current and predicted loading across the group of peer IAs is one of the 
key inputs to this optimization.   

1.8  Data Access [DA]  

1.8.1  Long Term Storage [STOR]  

A key service provided by any archive, intelligent or otherwise.  

1.8.2  Metadata Data Base System [MDBS]  

Search and library services (see §1.9 below).  

1.8.3  High Performance Disk Cache [CACH]  

A key aspect of overall IA performance will be to optimize the use of the Disk 
Cache.  This includes such strategies as pre-fetch of data sets based on predictive 
usage models (OPT), and co-operative participation in distributed production and 
data mining (PTP).  The throughput of any KBS algorithm that reads or writes 
large volumes of data to STOR will be strongly affected by optimization of the 
CACH services.   

1.9  Metadata and Libraries  

In this section, we will briefly describe nine important data repositories and the role of 
each in overall system functionality. 
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1.9.1  Archive Metadata  

This amounts to the searchable catalog of data sets and products currently held by 
the IA in STOR.  This catalog is also part of a distributed globally searchable 
virtual catalog that includes the corresponding holdings of other peer IAs.  

1.9.2  System Status  

This data structure is updated by STAT, and used primarily by OPT.  It contains 
both current and predicted status and loading of system hardware and software.  

1.9.3  System Logs  

This data structure is the history of system usage.  It is maintained by STAT, and 
it can be mined by STAT to produce predictive models of system loading 
correlated to a variety of events.  

1.9.4  User Profiles  

This is where system security data structures reside:  authentication, user access 
privileges, system time and storage thresholds, etc.  

1.9.5  Algorithm and Application Libraries  

A repository for the KBS and production software.  

1.9.6  Algorithm Metadata  

OPT will need to have performance models for the various DM and other 
algorithms it may be called upon to schedule.  The performance models and 
associated parameters reside in this structure.  When an algorithm is ready to be 
registered, as end product of the AD&V process, this data structure is updated to 
reflect the algorithm s performance characteristics and hardware requirements.  

1.9.7  Product Metadata  

As described in §1.6.1, the pedigree of the various products resident in the archive 
must be maintained and automatically verified to ensure comparability between 
and among data sources as well as compatibility with KBS algorithms and 
modeling software.  This data structure houses that information, as prepared and 
written by PMD.  

1.9.8  Science Models  

A vetted library for use by DM and KBS algorithms and processes. 



Conceptual Specimen Architecture  13  

1.9.9  System Models  

System performance models for use by system control and optimization 
algorithms and processes.   

1.10.  Internal Users  

1.10.1  Administration  

These users run daily operations.  They monitor system status, control user 
profiles and privileges, respond to failures, install new hardware or software 
entities, and generally ensure smooth day to day system functioning.  

1.10.2  Model Development and Validation  

These users work collaboratively with application and science partners to develop 
and install new KBS models and algorithms.  The AD&V functional component is 
the principal place within the system where this activity occurs.  

1.10.3  Policy and Priority  

These users set over-all system priority based on a balance of science goals and 
support for Application Partners.  For example, of the wide variety of DM tasks 
that could be run in the background, which will be selected for execution?  Or, of 
the wide variety of DM algorithms and/or research projects that might consume 
AD&V resources, which will be selected for active development?   

1.11  External Users  

1.11.1  Sensor Input  

The high performance network interface to the real-time input data stream from 
the sensors and/or their Level 1 processes.  

1.11.2  Sensor Web  

The IA is one component of a network of sensors able to dynamically retask in 
response to events or collection opportunities detected by one of its participating 
nodes.  

1.11.3  Interactive Users  
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Individuals or organizations that interface to the IA via the internet for tasking, 
search, algorithm development, and science.  

1.11.4  Application Partner Decision Support Systems  

ADP equipment operated by Application Partners capable of receiving reports 
from the IA and responding with requests for IA services (via APIF).  

1.11.5  Peer Intelligent Archives  

The IA is one of a group of peers that share data and services, and that co-operate 
in the optimized execution of distributed KBS algorithms and product generation 
(see PTP above).  

1.11.6  Product Subscribers  

Organizations and their systems capable of receiving IA products at high 
bandwidth.  

1.12  IS/IDU Research Projects and Algorithms Applicability to the KBS/IA    
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In this section, we will consider the role that advanced KBS algorithms and associated 
technology might play in a KBS/IA.  Our starting point is the set of research projects 
studied at some length in previous work [9].  However, in addition to the nine research 
projects surveyed there, we will also include two addition projects:  the work of Tilton, 
and of Emerson.  As we will see, both of these fit well into the overall IA conceptual 
specimen architecture.  

The table above summarizes the results of this section.  The research projects label the 
columns, and the rows are labeled by the functional components and sub-components 
from the FDB.  An entry in the matrix represents a potential for the associated functional 
components (row) to make effective use of the associated IS/IDU research (column).  In 
the following subsections, we will provide additional discussion of the various 
contributions each project might play.  That is, we have in effect sliced the matrix 
column-wise, and for each functional component, we will indicate how the research area 
might contribute to that functionality.  

1.12.1  Brodley [BROD]  

 Brodley has investigated boot-strap approaches to classification and clustering.  Thus, 
her algorithms do not depend on the availability of training sets, and derive prospective 
classes (and associated classification rules) without relying on domain models.  The 
classification algorithms produced in this way can then be inspected by knowledge 
experts to see if the classes generated by the algorithm have an interesting scientific or 
economic underlying cause which would be of interest in its own right.  If so, the 
classification scheme can then be refined, and used for a variety of possible applications.  

Within SC&A, both STAT and OPT could benefit from classification schemes that 
identify trends in time series data.  Both rely on the availability of good predictive models 
for system utilization (i.e., data mining of the archive usage logs)  something which 
BROD should be well-suited to provide.  AD&V could benefit from the fact that BROD 
does not require training sets.  This means that, in developing training data for other DM 
algorithms, a BROD-based algorithm could potentially kick-start the development effort 
by automatically extracting data sets of interest  a kind of automatically self-generated 
content-based retrieval.  

I&KB is a generic place-holder for all sorts of KBS algorithms, of which BROD is 
certainly one.  We have already touched on the fact that BROD can support a kind of 
boot-strapped CBR; and executing classification algorithms (like one produced by 
BROD) is at the heart of input data stream event detection (IDS).  

BROD algorithms will certainly need to be modeled using PMD data structures.  Using a 
BROD-based classifier for initial product error screening of input sensor data (SP) is a 
possible application.  The strong dependency of FILT on ED means that BROD should 
be equally applicable to FILT functionality.  

1.12.2  Emerson [EMER] 
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This research was not documented in the previous applicability study, but should play an 
important role in a KBS/IA.  The Emerson technology computes (and stores both as data 
and metadata) the fractal dimension and associated geostatistical characterizations of 
underlying imagery.  This provides an alternative representation  a transform  of the 
input data set that is independent of any particular science application that might choose 
to use it (e.g., for data mining purposes).  This algorithm is well-suited for executing 
more-or-less unattended for long periods of time on very large portions of the archive.  
The results (and searchable metadata) are then stored with association back to the input 
sources, and can themselves now be inputs for a variety of other KBS techniques.  

Along with TILT, then, EMER is a prime example of a XFM-style algorithm, and one of 
those accessible as a generic DM work-horse (I&KB).  EMER could also be used as one 
step (e.g., a data conditioning algorithm) in an ED-style near-real-time data flow 
(supporting either IDS or CBR).  The fact that EMER will often be used in back-ground 
mode over very long periods of time (months) on very large sets of data means that 
metadata describing the production pedigree of the outputs will be important (PMD) as 
well as optimized strategies for accessing long-term storage (STOR).  

1.12.3  Kargupta  Distributed Data Mining [KARG_1]  

This is the first of two research areas within the Kargupta team.  This one references 
work performed on implementing distributed versions of standard large-scale data mining 
techniques.  Since the IA resides in a distributed environment with multiple IA peers, this 
is an important and potentially very useful capability.  

The development and validation effort for this type of processing is challenging, 
especially when more than one IA is to participate in a production run (AD&V).  As a 
general purpose DM work-horse, KARG_1 algorithms reside in and contribute to I&KB 
functionality.  And the distributed nature of the processing means a strong connection to 
and role within PTP functionality.  The production pedigree for products resulting from 
KARG_1 algorithms can be challenging, because of the very large number of 
combinations of possible inputs and distributed processing contributions (PRD).  

1.12.4  Kargupta  Distributed Mining on Real-time Streams [KARG_2]  

This research direction has a number of operational characteristics (e.g., near-real-time 
time series analysis and signal processing) that suit it to  collections of co-operating 
embedded sensors/actuators.  Finding possible roles for this technology in an IA is 
challenging.  However, we can propose the following possible uses.  

Within the IA itself, monitoring and optimizing the utilization of the computing resources 
(processors, storage, networking, etc.) is a near-real-time function that might be able to 
utilitize KARG_2 functionality (STAT and OPT).  However, it might be employed, it 
seems to fit best into a data flow mode of operations, characteristic of IDS; and this, in 
turn, could support FILT.  As a distributed technique, PTP relationships will be critical, 
and generic relationships to I&KB and PRDG appear to be applicable. 
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1.12.5  Kumar [KUMAR]  

As discussed at some length in the applicability study [9], of all the IS/IDU projects 
Kumar represents the best example of actually doing earth science using DM techniques 
(in this case, clustering using both spatial and temporal correlations over very large 
geographic regions).  This means it has a role in I&KB that is different, and more 
important, than generic DM functionality.  It becomes an exemplar for how science can 
be done using the KBS/IA capabilities.  The extraction and conditioning of distributed 
data (PRDG and PTP) are key steps in the KUMAR approach; and because of the fact 
that KUMAR is mining time series data, there are embedded in it data management 
techniques that will be useful for both STOR and CACH.  In Use Case 3 (§3.3 below), 
we examine these issues in greater detail for a KUMAR-like application.  

1.12.6  LeMoigne [LEMGN]  

This is the best example, among the IS/ISU researchers, of a fusion algorithm  one that 
accepts two (or more) compatible data sets as input, and produces a single composite 
output.  A good example of its utility is in DPRP (preparing raw data sets, via value-
added processing, into more usable, higher-level representations).  The fact of multiple 
independent (but compatible) data sources means that LEMGN can both utilize and 
contribute to distributed PTP and PRDG techniques.  This is also the first time we have 
seen a strong potential contribution to the sensor web and application DSS (SWIF, 
APDS) interfaces  by providing the ability to generate composite representation that 
enable detection and response in a feed-back loop scenario.  And the need for strong 
pedigree tracking  both of the algorithm and the input sources  comes with this type of 
processing (PMD).  

1.12.7  Nemani [NEMANI]  

This research does not so much concern DM algorithms as processing architectures 
capable of automatically assembling lower-level products of algorithms, via work flow 
models, into finished user-oriented displays.  As such, it focuses on architectural issues:  
optimizing the work; assembling distributed and or heterogeneous components; 
efficiently managing the computing resources, etc.  This tends to place NEMANI in 
regions of the FDB that are mostly neglected by other researchers:  IMPT, EXPT, 
WWW, OPT, SWIF, and APDS.  The distributed aspects of the NEMANI approach 
could contribute to both PRDG and PTP; and performance optimization clearly will 
touch use of CACH.  

1.12.8  Pavel  [PAVEL]  

While differing in technical details, at the application level both PAVEL and BROD 
share the same functional space, with many of the same objectives.  The application 
domains for PAVEL include face and speech recognition; but the type of result returned 
by his unsupervised clustering approach is very similar, at an abstract level, to that of 
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BROD.  Hence the strong overlap of their functional applicability, including:  all 
functional sub-components in SC&A and ED as well as PRDG, PMD, FILT, SP, and 
(of course) I&KB.  

1.12.9  Smelyanskiy [SMLYN]  

Like KARG_2, the technology is best applied to near-real-time time series or signal 
processing data.  As such, it does not fit well into the KBS/IA conceptual specimen 
architecture presented here.  Its ability to handle high data rates means that there is an 
affinity and/or potential applicability to the CACH component, and (for similar reasons) 
to the IDS component (that is, it might be able to sit on the ingest stream and perform 
non-linear correlations or similar matched filter processing).  We also speculate that it 
might be able to perform specialized analysis, in near real time, of sensor performance 
characteristics that might be useful as part of the SP feed-back process.  The truth, 
however, is that SMLYN fits better at the part of the O 

 

D 

 

I 

 

K food chain that is 
nearest to the sensor (e.g., in remote exploration scenarios and concepts of operation).  

1.12.10  Teng [TENG]  

This research, which has acquired the name of data polishing, is really a way of 
retraining classifiers by using modified training sets from which outliers have been 
polished away.  Often the resulting version of the classifier is significantly more 

compact, faster, and more accurate than the unpolished version.  Thus TENG is best 
suited to assisting in the development and optimization of other DM algorithms.  The 
place reserved in the FBD for this functionality is data mining support (DMS) within the 
DQ component.  Its major subscriber, AD&V, has also been called out, as well as I&KB, 
the generic locale for all DM algorithmic techniques.  

1.12.11 Tilton [TILTON]  

In terms of applicability, this algorithm is virtually indistinguishable from EMER  the 
other new research area included in this analysis.  Whereas EMER transforms and 
extracts using fractal techniques, TILTON uses image segmentation based on 
geostatistical measures of high or low local variability.  This representation does not 
require any science models, and (like EMER) can be thought of as a transform (XFM) of 
the data into a space where certain types of relationships, correlations, and features may 
be easier to detect.  Thus, for example, long-term background processing of very large 
data sets is an attractive concept of operations, with the associated areas of applicability 
(IDS, CBR, and STOR).  
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2.  Emerging Cyberinfrastructure  

The purpose of this section is to review current or developing technologies that are likely 
to provide significant infrastructure support for any KBS/IA implementation.  

2.1 Introduction  

The cyberinfrastructure for a knowledge-based intelligent archive will enable users from 
a wide spectrum of research and application communities to access: 

(1)  high performance computing, networking, and communications; 
(2)  instruments that collecting data; 
(3)  data, information, and knowledge; and 
(4)  various services such as visualization, analysis and decision support.   

Such a cyberinfrastructure will include organized and self-contained aggregates of 
resources, including instruments, technologies, information, services, and standard 
interfaces among different components.  The components of such a cyberinfrastructure 
can be grouped into two categories: (1) a pure hardware-related category such as network 
bandwidth and computer hardware facilities; and (2) a middleware category which is 
primarily software technology built upon available hardware facilities.  The focus of the 
following paragraphs will be on enabling architectures and technologies for the second of 
these, the middleware requirements.  

2.2  Service Oriented Architecture and distributed services   

The requests to an IA are diverse and dynamic, and may require dynamic chaining of 
multiple services available through different, and perhaps geographically distributed, 
service providers.  The service-oriented architecture (SOA) is designed to address such 
requirements by constructing a distributed, dynamic, flexible, and re-configurable service 
system using internet protocols and technologies as the back-bone.  

The key component in the service-oriented architecture is services. A service is a well-
defined set of actions. It is self-contained, stateless, and does not depend on the state of 
other services. Stateless means that each time a requester interacts with a service, an 
action is performed. After the results of the service invocation have been returned, the 
action is finished. There is no assumption that subsequent invocations are associated with 
prior ones. In the service-oriented architecture, the description of a service is a 
specification of the messages that can be exchanged between the requester and the 
service. Standard-based individual services can then be chained together to solve 
complex tasks. The basic operations in SOA include publish, find, bind, and chain 
(Figure 2.1). 
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               Figure 2.1 The basic service operations  

There are three types of actors in SOA:  (1) the providers who make specific services 
available over the Internet; (2) the requestors (users) who wish to access these services;  
and (3) the brokers who help requestors to find the right services. When a service 
provider sets up a service over the Internet for use by requestors, the service descriptions 
must be published to a broker (e.g., a registry, catalog or clearinghouse). When a 
requestor requests a service, the requestors and service brokers need to collaborate to find 
the right services. Service requestors describe the kinds of services they re looking for to 
the broker and the broker delivers the results that match the request back to the requestor. 
After the right service is found, a service requestor and a service provider negotiate as 
appropriate so the requestor can access and invoke services of the provider (bind). In 
many cases, a sequence of services must be bound together to produce the user-desired 
results (chain).  

2.3 SOA and the Web  

The SOA can be implemented using many different network environments. The two 
environments of interest here are the Web and the Grid.  Web services mean services 
offered via the Web. The implementation of SOA in the web environment becomes Web 
services.   A typical Web services scenario is that a client sends a request to a service 
provider at a given URL using certain protocol such as HTTP Get, POST, and SOAP.  
The service processes the request upon receipt and returns a response.  A simple example 
of a Web service is a data subset service in which the client requests a data set within a 
user-specified spatial bounding box and temporal interval; the data service is then to 
return the data set that meets the client s specification.  In this simple example, the 
request can be met almost immediately, with the request and response being parts of the 
same method call.  A more complex scenario can involve chaining of different services 
provided by either the same or different providers.  For example, a client wants to obtain 
a map at a given projected coordinate reference system.  Services at the data provider site 
can provide data but not a map; and the data are at a different projected coordinate 
reference system from what was requested.  In this case, the original request can only be 
met by chaining the data provider s service with a data coordinate re-projection service 

Broker

ProviderRequestor

1. Publish2. Find

3. Bind

Provider

4. Chain
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and a data-to-map conversion service.  In this chain, responses (outputs) from one service 
may automatically be forwarded as operation requests (inputs) to the next service in the 
chain. 

Web services are self-contained, self-describing, modular applications that can be 
published, located, and dynamically invoked across the Web. Web services perform 
functions, which can be anything from simple requests, as shown in examples in the 
previous paragraph, to complicated processes, such as extracting high level information 
or knowledge from a set of heterogeneous data sources.  Once a Web service is deployed, 
other applications (and other Web services) can discover and invoke the deployed 
service. Two characteristics provide the real power of web services:  

 

 Everyone on the Internet can set up a web service to provide service to anyone who 
wants many services will be available.  

 

 The standard-based services can be chained together dynamically to solve 
complicated tasks  just in-time integration.  

2.4 SOA and the Grid   

2.4.1 Introduction   

The Grid is a rapid developing technology originally motivated and supported from 
sciences and engineering requiring high-end computing, for sharing geographically 
distributed high-end computing resources ([10], [11], [12]). The vision of the Grid is to 
enable resource sharing and coordinated problem solving in dynamic, multi-institutional 
virtual organizations ([11]).  The key for the Grid success is the open source middleware 
called Globus Toolkit ([13], [14], [15]). It has become a de facto standard for all major 
Grid implementations. The implementation of services in Grid environment becomes the 
Grid services.   Essentially, the Grid includes several types of middleware that can 
perform such tasks as computing and data system discovery and access, uniform security 
services, workflow management, fault management and recovery, large, complex, and 
distributed data archive management.  With these middleware services, the Grid can 
provide on-demand, ubiquitous access to computing, data, and services and constructs 
new capabilities dynamically and transparently from distributed services.  

The latest major version of Globus is Globus 3.0 [10], which implemented the Open Grid 
Service Architecture. The fundamental concepts of services in the Grid are the same as 
the Web services. However, they do have differences. A Web service can be invoked by 
any requestors over the Web while a Grid service can only be invoked by the requestors 
within the virtual organization. The web service practices also have been extended in 
Grid to accommodate the additional requirements of Grid services, including 

 

Statefull interactions between consumers and services 

 

Exposure of a web service s publicly visible state

  

Access to (possibly large amounts of) identifiable data 

 

Service lifetime management 
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Currently the Grid and Web communities are converging through the Web Service 
Resource Framework (WSRF, [14]).  

2.4.2 Lessons learned  

Much research has been done on the development of the Grid and many lessons have 
been learned in different aspects of the Grid.  These include:  

 

Initialization, installation, configuration, and operation are not easy tasks, 
including challenges in technical, organizational, and policy aspects.   

 

Software requirements are dependent on applications and on middleware used by 
applications. 

 

It is difficult to maintain consistency between different Grid sites, such as the 
stability and availability of resources, level of system dedication, level of 
expertise and area of interest of users/developers/administrators, version update of 
required environments and tools (e.g., Globus Toolkit). 

 

Close collaborations among discipline and computer scientists and among 
different communities are important but are sometime difficult. 

 

Standard infrastructure is very important, including interface, resources 
description and access.   

2.5 SOA and interoperable standards  

In order for SOA to work, interoperability standards related to all aspects of service 
operations are required. The major international bodies setting the web service standards 
are World-Wide Web Consortium ([22]) and Organization for the Advancement of 
Structured Information Standards ([18]).  The body that sets the Grid service standards is 
the Global Grid Forum ([14]). The major standards related to Web services are shown in 
Figure 2.2.  In addition to the general Web services, The Open Geospatial Consortium 
(OGC, formerly named OpenGIS Consortium) aims the development of interoperable 
standards for geospatial Web services implementation standards based on content and/or 
abstract standards set forth by various organizations including ISO, FGDC, and INCITS, 
as well as technology standards developed by W3C and OASIS.  

U D D I

W SD L

X M L

SO A P

X M L

Service 
B ind ing 

Stack

(B ind)

Service 
D escr iption Sta ck

(P ublish)

Service 
D iscovery Stack

(F ind)

H T T P

SSL

H T T P

Security 
Stack

B E P L

M odeling & 
W o rkflo w 

Sta ck

(C ha in)

X M L 

Figure 2.2  The major Web services standards  



Conceptual Specimen Architecture  23  

2.6 SOA and OGC technologies  

2.6.1 Introduction  

OGC has successfully executed several phases of the OGC Web Services (OWS) initiative, 
including Web Mapping Testbed I (WMT) phase I and phase II, and OWS 1.1, 1.2, and 2.0.  
These OGC activities were mainly intended to advance interoperable geospatial Web 
services technology, support development of multi-vendor portable demonstration, and 
feed requirements and recommendations into OGC s standard specification process.  The 
activities helped to identify issues concerning the lack of interoperability among systems 
that process geospatial data, and helped to develop, test, and demonstrate consensus-
based implementation specifications.   Current status is that a set of Web-based data 
interoperability specifications has been established.  These include:  

 

Web Mapping Specification (WMS), which allows interactively assembling maps 
from multiple servers; 

 

Web Coverage Service (WCS) Specification, which defines interface for accessing 
rater (grid, image) type geospatial data, especially those of remote sensing data, from 
multiple coverage servers; 

 

Web Feature Service (WFS), which defines interface for accessing feature (vector) 
type geospatial data; 

 

Web Registry Service (WRS), which specifies data and service publishing and 
discovery interface; 

 

Web Coordinate Transfer Service (WCTS), which defines interface for performing 
coordinate transformation of geospatial data; and 

 

Web Image Classification Service (WICS), which specifies interface for classifying 
image type data.  

These specifications allow publishing, searching, and access to geospatial data and services 
in a distributed environment, regardless of data format, coordinate reference system, 
spatial/temporal resolution, and geographic locations of data archives and service providers.  

2.6.2 Lessons learned  

A number of OGC testbeds and initiatives had been successfully conducted in developing 
interoperable standard interfaces.  Lessons learned from these activities include:  

 

Interoperable, standard compliant interface significantly improve the publishing, 
discovery, and access to geospatial data and services.  

 

Development of interoperable standard interface is required for Web services but 
formal adoption of such standard interfaces may take some time.  Most OGC 
testbeds and initiatives were run at very fast tracks (e.g., six months).  Several 
rounds of revisions and implementation tests/demonstration were usually needed 
to reach a stable specification.  For example, the first version of the WCS 
specification, version 0.5, was completely tested in November, 2001.  It was 
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updated to versions 0.7, 0.8, 0.85, 0.86, 1.0.0, and now 1.0.20 as of September, 
2004.  Revisions will still be needed before it can be finally considered stable 
specification.  

 
Collaboration and consensus among different users, vendors, organizations, and 
communities are important to the successful development of standard interface.  
There are always ambiguities for clients and service providers to adopt OGC 
specifications, especially concerning terminologies, parameters, keywords used 
differently among different people.  The process of reaching consensus can be 
lengthy and onerous.  
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3.  Use Cases  

In this section, we will present three use cases to illustrate the intended concept of 
operations for the Conceptual Specimen Architecture described in Section 1.  Three use 
cases will be presented:  (1)  a use case based on near-real-time feed-back to an 
application partner, relying on event detection functionality (§3.1);  (2) a data mining use 
case relying on on-going back ground processing using a data transformation algorithm 
(§3.2); and (3) a data mining use case focused on a specific research question in Earth 
Science (§3.3).  A final section (§3.4) then discusses how the knowledge building 
technologies described for an Intelligent Archive are also applicable to remote 
exploration scenarios, such as manned or unmanned missions to the Moon or to Mars.  

3.1  Use Case 1:  Feed-back  

At a top level, the functionality provided by the KBS/IA will perform automated event 
detection in near-real-time on an incoming data stream from an earth observing sensor 
(such as MODIS or AMSU).  The event detection processing is incorporated into the 
standard ingest processing flow for geographical areas of interest; and the detection of an 
event (forest fire, infestation, algae plume, volcanic activity, etc.) is relayed to 

Application Partner automated decision support software for analysis and response.  In 
the scenario we will present, the IA also provides the Application Partner with access to 
other data mining capabilities (if required), and to the Sensor Web to obtain additional 
observations in other spectra or at other resolutions.  

We have broken the discussion into four areas:  development, validation, and registration 
of the event detection algorithm (§3.1.1); optimization (§3.1.2); production (§3.1.3); and 
other capabilities and considerations (§3.1.4).  

3.1.1  Development, validation, and registration of event detection algorithm  

Before a KBS algorithm can be put into production, it must be validated, and parameters 
that characterize its performance characteristics must be determined.  The existing data 
mining capabilities already in place can assist in this process.  For example, suppose that 
a high fidelity science model for the phenomena already exists, but that its performance 
characteristics (in terms, say, of latency) do not meet the application requirements.  In 
that case, it may be useful to construct a tuned pattern matching algorithmic 
implementation (say, using a neural net, or a support vector machine) that meets 
classification accuracy requirements but that executes with acceptable latency.  The data 
mining facilities of the KBS/IA can extract training and test sets using the high fidelity 
model, which are then used as input to the Artificial Intelligence algorithms.  This is an 
important aspect of the KBS/IA  one generation of technology leveraging the next.  

An administrative process oversees the selection of candidate development efforts based 
on a prioritization of science needs, national policy, available resources, and risk.  Staff 
within the KBS/IA assists scientists and Application Partner representatives to specify 
requirements, and the algorithm development process is then initiated.  Functional 
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components that might come into play, at this stage, include (see the FBD from Section 
1):  

AD&V, to oversee the development and validation of the algorithm; 

I&KB, for inferring a model of the event from available data; 

CBR, for retrieving training data; 

DMS, to assist in algorithm refinement and performance enhancement; and 

PTP/PRDG/DPRP.  

This last trio calls for some explanation.  In order to automatically detect the event of 
interest, it may be necessary to perform some preliminary data transformation (XFM) or 
other processing, including as input data sources derived from peers in the distributed 
network of KBS/IAs.  Such preprocessing might include, for example, fusion of multiple 
datasets into a single co-registered dataset.  The working out of the specific form of the 
required inputs, and arranging for them to be available from distributed peers, is to be 
carried out by sub-components within VP with the participation of DPRP.  

Models for the computational performance of the ED algorithm under development 

 

throughput, access to secondary storage or disk cache, memory, etc.  must also be 
developed for use by the system optimization algorithms (in OPT) that oversee actual 
production (for entry into the searchable Algorithm Metadata structures, §1.9.6).  

3.1.2  Optimization  

This portion of the use case, while conceptually distinct, has significant overlap with both 
the development (§3.1.1) and production (§3.1.3) stages.  The task, here, is to ensure that 
the processing flow implementing the algorithm is optimized with respect to a number of 
criteria:  production priorities; physical data access (i.e., use of the high performance data 
cache, pre-fetch, etc.); and production flow dependencies (so that work required by 
multiple ingest stages need only be performed once).  In the use case under consideration, 
the ED algorithm is to be incorporated into the ingest production flow, via IDS.  Where, 
within that flow, to place the detector, and how to route the output (including any 
metadata and logging data the ED algorithm may produce) is also part of the optimization 
process.  

There may also need to be negotiations with KBS/IA peers, if inputs from them are 
required.  Or, mutatis mutandis, it may be that a feed-back process from a distributed peer 
requires input, and the production resources to provide it would then need to be made 
available (subject to global prioritization policy).  It may also be appropriate to develop 
stochastic models for uncertain events:  the likelihood of event occurrence, the false 
alarm rate, the expected level of processing required should an event be detected and 
verified (including increased user access to KBS/IA stores and products resulting from 
the scientific interest in the event), etc.  
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These decisions, or production models, are the responsibility of OPT, using especially 
the performance models held in Algorithm Metadata, and the services of VP/PTP.  

3.1.3  Production  

At this point, the ED algorithm is ready to be placed in the ingest production stream, via 
IDS.  If we assume (as seems reasonable) that interest will be focused on relatively small 
geographical regions (e.g., north western Wyoming), then sensor access patterns to that 
region can be used as triggers for implementing this special functionality, which need not 
be continuously applied to all the incoming data.  It is also likely, in this type of scenario, 
that the algorithm will make use of change detection.  This means that some amount of 
history (short, if change detection is highly dynamic; or more lengthy, if trends over time 
are to be used) must be available  presumably, via pre-fetch into the high performance 
data cache.  And as noted above, it may also be required to access and fuse remotely held 
related data, depending on algorithmic requirements.  

When a possible event occurs (with some known false alarm rate), a sequence of 
resulting actions is then set in motion.  The AP/DSS is notified, together with whatever 
associated data products may be required.  This DSS then has available a number of 
options.  It may decide, using its own algorithms and/or expert review, that the event was 
a false alarm.  Or, it may request additional DM services from the KBS/IA (e.g., 
enhanced products or virtual products).  Or, it may request dynamic retasking, via 
FB/SWIF, of resources in the Sensor Web (assuming it does not have direct, independent 
access of its own).  Or, finally, it may choose to change the operational characterics of 
the ED algorithm:  changes to thresholds, or to production priority, etc.  This input from 
the AP/DSS to the KBS/IA is critical to providing optimized dynamic response based on 
the actual properties of the event under consideration.  

3.1.4  Other capabilities and considerations  

During production, STAT is keeping track of the resources used, and access patterns 
resulting from the detection of an event.  These are entered into the System Logs, and then 
become available for use by DM algorithms looking for usage and loading patterns.  The 
idea is that OPT can then use this type of data to improve its own stochastic models of 
system utilization  e.g., by pre-fetching historical data in the area of interest into CACH 
to be ready to respond to anticipated user interest.  

Of course, in the background are all the other on-going functions of the KBS/IA:  the 
normal ingest procedures, for example, including updating of metadata, execution of 
required XFM algorithms on the input stream, transferal of data to STOR, etc.  Part of 
the job of OPT is to ensure that the ED functionality does not interfere with these 
ongoing production requirements, and to optimize the flow in response to dynamic 
occurrences consistent with administrative policy and priorities.  As we mentioned briefly 
in passing, it may also be necessary to support the ED/FB requirements of a peer, and the 
associated loading on the local system (again, partly deterministic based on known sensor 
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access patterns, and partly stochastic based on uncertain event occurrence) should be 
modeled and enter into optimization calculations.   

3.2  Use Case 2:  Background data mining using XFM  

At a top level, a data transform algorithm is applied to large selections of the underlying 
data archive.  Typically (despite the notional flow in the FBD), such algorithms accept as 
input data from the O 

 

D 

 

I 

 

K  KBS hierarchy, and produce either data (of a 
transformed kind) or information as output, along with searchable descriptive metadata.  
As will become clear during our discussion, such a transform is typically self-contained 
(that is, it relies on nothing other than an input data entity) and is not focused on any 
particular science problem (although the solution of science problems, or the building of 
science models, may choose, if they wish, to utilize the transformed products).  As such, 
a transform is well-suited to implementation as a background process operating over an 
extended period of time  up to many weeks, or months  in a prioritized order over very 
large subsets of the archive.  

As above, we have broken the discussion into four areas:  registration of the transform 
algorithm (§3.2.1); optimization (§3.2.2); production (§3.2.3); and other capabilities and 
considerations (§3.2.4).  

3.2.1  Registration of the transform algorithm  

Unlike data mining algorithms (discussed in §3.1 above, and §3.3 below), transform 
algorithms are typically developed independently of the archive, and cannot make use of 
its data mining services (other than to provide examples of input data sets on which to 
test the code).  As a result, it is likely that a transform comes to the KBS/IA in close to 
finished form, and need only be incorporated into the production libraries.  This means 
building a performance model (for use by the optimizer) as well as review by the 
administrative oversight function that establishes production priorities.  This review must 
decide such matters as:  which transform algorithms to execute, with what relative 
priority, on which subsets of the archive, and in what order.  Given the priority scheme 
(in our envisioned use case, the overall priority is low, so that XFM operates as an 
ongoing background process, consuming otherwise unused cycles) and the order in which 
to process the target data sets, OPT can now schedule the XFM functionality.  

The output of such a transform can, itself, be considered as a kind of product (typically at 
the data or information KBS levels).  In that case, it can be:  (1) pre-computed (the case 
of interest here, by XFM); (2) a virtual product (that, computed on-demand by VP); or (3) 
computed as part of the ongoing ED or IMPT functional components.  In practice, the 
metadata that is produced as an auxillary to the transform is critical to utility, since the 
transformed product itself may be nearly as large as the underlying data set from which it 
was produced.  From a processing perspective, these algorithms are typically highly 
parallelizable, both internal to the algorithm and externally, across the independent input 
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data entities.  As such, they may be able to make very effective use of special purpose 
high performance parallel hardware (MIMD, SIMD).  

3.2.2  Optimization  

Given a performance model, priority, and order for processing, OPT is well-placed to 
make efficient processing scheduling decisions.  In addition, we note two other factors 
OPT may wish to take into account.  First is the physical data model for the output data 
sets.  This is a consideration for any product to be permanently placed in the archive, and 
it depends on having some notion of how the data is intended to be used.  The point is 
that to access data by (say) time series at a single location is a very different operation 
from access to data covering a large area but that was collected at a single time.  How the 
data is stored will determine, in large measure, how long a seek-and-retrieve operation 
will take; and it may be possible for OPT to arrange these matters in advance (or to 
provide multiple versions) to as to speed the DM application that will eventually access 
the data.  

This, in turn, bears on another performance enhancement  namely, the staging of the 
data to (on input) and from (on output) CACH.  Again, OPT may be able to make 
decisions that improve throughput, and that reduce the likelihood of conflict with other 
ongoing processes (which may be subject to uncertain stochastic events requiring 
dynamic reoptimization).  

3.2.3  Production  

The production strategy considered in this use case is simple:  consume available unused 
cycles to complete, over time, and as a background process, the transformation of 
specified large subsets of the archive.  

As mentioned briefly above, there are other production modes in which XFM-style 
algorithms could be used, and we pause here to mention three of the most important.  
First, it is possible to impose XFM algorithms as part of IMPT and IDS functionality.  In 
the case of IMPT, not only the data received from the sensor would be stored (along with 
its metadata); but also the transformed version of the data (along with its separate 
metadata).  Thus, from a single input data stream there may arise two or more output data 
streams for entry into STOR.  Second, it is possible to utilize an XFM algorithm as part 
of ED  for example, as discussed in §3.1, in support of FB functionality.  Here, the 
product of XFM is immediately consumed, and is not stored for later retrieval.  And third, 
it is possible that XFM might be invoked as part of VP functionality, either returning an 
on-demand product to a local user, or in support of a user process located at a distributed 
peer in the KBS/IA network.  

Another important aspect of production functionality is support for PMD.  Recall that this 
is the function that keeps track of the production pedigree of the various products stored 
in the archive, and that ensures that using processes are compatible (in terms of their 
input assumptions) with the version and formats of the algorithms used to create the data 
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sets.  Since XFM used in this mode creates a product in this sense, it must furnish the 
corresponding descriptive metadata to PMD for entry into Product Metadata.  

3.2.4  Other capabilities and considerations  

As mentioned briefly above, the algorithmic characteristics of XFM-style algorithms 
make them ideally suited to special purpose massively parallel hardware (MIMD or 
SIMD).  Ideally, the KBS/IA performance models (in Algorithm Metadata) will be able 
to capture this aspect of these algorithms and, if such hardware is available, make suitable 
use of it.   

3.3  Use Case 3:  Large scale data mining for science research  

We begin by observing that the discussion of this use case is made difficult due to the 
very large number of different approaches a research scientist may take in the 
investigation of a problem or phenomenon of interest.  Of these, we mention two in 
particular with significant impact on the data mining technologies that might be 
employed.  First, there are the so-called boot-strap methods which attempt, via 
clustering or similar aggregation approaches, to identify statistically significant patterns 
or relationships in large data sources which had not been previously noticed.  As an 
alternative, we may cite the work of Kumar [16], in which a type of relationship which 
was already known (an index ) was used to guide development of a sophisticated 
temperal-geographic classifier.  This classifier was then able to identify other previously 
undetected instances for further study.  In the discussion which follows, we will have 
Kumar s work in mind as a general model; but we will also attempt to indicate important 
variations or excursions which might come into play if the research goals or application 
domain were somewhat different.  

As with the first two use cases, we separate the discussion into four partially over-lapping 
general areas:  development, validation, and registration of the data mining algorithm 
(§3.3.1); optimization (§3.3.2); production (§3.3.3); and other capabilities and 
considerations (§3.4.4).  

3.3.1  Development, validation, and registration of the data mining algorithm  

As indicated in the discussion above, an important initial question concerns whether there 
already exist examples of the phenomena of interest, or high-fidelity models which could 
be used to search for such examples.  If so, the general techniques already described in 
§3.3.1 above would be appropriate here, as well.  If not, then boot-strapping methods 
must be used.  These can be very human expert intensive, since a clustering algorithm (to 
use the most common approach as an example) will often extract relationships that are 
not causal but simply reflect the statistical properties of the particular example that is 
under examination.  Thus, a review of the product by an expert is required; and this 
review is typically the gating factor controlling overall throughput for this stage of the 
end-to-end process. 



Conceptual Specimen Architecture  31  

In Kumar s work, this stage was able to rely on existing examples of indices to use 
guide the development of a clustering algorithm so as to be able to extract and hence 
reproduce the known phenomenon.  The resulting classifier could then be applied to new 
data to see if similar previously unknown instances might emerge.  

Once a relation has been identified as having scientific merit (and here, the administrative 
review and prioritization process comes into play), the algorithm to detect its presence 
can be honed to achieve acceptable throughput as well as Type I and Type II error rates.  
The KBS/IA can be used to generate test sets for validating these requirements (CBR), 
and for generating the algorithm performance models for use by OPT.  

3.3.2  Optimization  

Because of the greater complexity of this problem when compared to our two previous 
use cases, the optimizer may need to take a number of additional factors into account.  
First, there is the issue of the physical architecture of the archived data, and the match (or 
lack of it) between this physical architecture and the access patterns the algorithm will 
require.  One important example of this (which we mentioned in passing above) is the 
difference between accessing wide geographic areas for which the sensor data was 
collected fairly close together in time, on the one hand; versus a number of time 
collections, spread over a considerable length of time, but for a narrowly circumscribed 
area.  The physical data architectures (that is, the position of the data sets on the tape or 
spindle) to optimize these two types of retrieval are very different, and it will fall to the 
optimizer attempt to understand these performance constraints and impacts and, where 
possible, perform physical rearrangement (or pre-fetch) of the data to keep overall 
throughput at acceptable levels.  Optimizing the use of CACH will therefore form a 
significant part of structuring the process flow.    

It is also much more likely, when compared to the previously discussed use cases, that 
the distributed capabilities of the network of KBS/IA will be required  either through the 
assembly and preparation of the data sets (VP/PTP/PRDG/DPRP), or through the direct 
implementation of distributed data mining algorithms (e.g., as per Kargupta [9, §3.5]).  
Data quality issues are also likely to arise here, particularly with regard to the processing 
pedigree of the input data sets (see PMD and Product Metadata).  The form of the output, 
and metadata descriptions of it, also affect these two entities.  

The full end-to-end process will probably also require feed-back and iteration, as 
additional runs are required based on new discoveries and/or questions arising from 
earlier runs.  Hence, ongoing administrative review of the overall progress of the 
research, with possible adjustments to priority, must be provided.  

3.3.3  Production  

The computational demands generated by this type of research can vary enormously, 
depending on the complexity of the correlations being investigated, the size and 
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resolution of the data, the fidelity of models embedded in the algorithms, etc.  Runs can 
vary from near-interactive rates, on the one hand, to long term batch or back ground 
processing, on the other.  Depending on the amount and characteristics of the output 
products, there may be a need for specialized analysis and display software (e.g., 3-D 
immersive virtual reality displays).  And as touched upon briefly above, we envision an 
ongoing assessment of the scientific merit of the results that are being produced, and the 
ability to adjust production and resource priority dynamically in response to stochastic 
shifts in system loading as well as scientific merit and risk of the research.  

Since the KBS/IA is one peer in a network, it will also be called upon to support the DM 
activities initiated at remote sites.  This, in turn, may result in additional loading on the 
local resources (CPU, memory, disc, network bandwidth, etc.), and this loading must be 
anticipated (when possible, using predictive models) and factored into optimized 
dynamic adjustments to processing flows and relative priorities (OPT/PTP/I&KB)  

3.3.4  Other capabilities and considerations  

The use of the type of data mining capabilities such a KBS/IA could provide is still far 
from routine in the Earth Science community, and it is still unclear, of the many 
capabilities that could be provided, which will prove to be most useful in the long run.  
Faced with this uncertainty, it seems best to focus first on a few areas which appear to 
have the greatest possibility of success.  By showing value on well-chosen demonstration 
examples, the utility of the KBS/IA concept can be shown; and this can then serve as a 
basis for incremental expansion to the inclusion of additional capabilities.  

It should also be observed that the DM activities described here will often occur during 
the first stage of other functional components.  For example, an ED algorithm may be 
required; but the development of the algorithm may entail the use of sophisticated DM 
and I&KB activities.  As noted at the outset, there are technology dependencies, and 
capabilities refined in one area can then be enablers for advances or improvements in a 
different but related area.  

3.4  Use cases involving remote exploration  

In this section we will consider another application domain for KBS systems and 
technology:  remote exploration.  In previous work [9], we indicated how the KBS 
algorithms developed under the IS/IDU program were applicable beyond Intelligent 
Archives.  The brief discussion here will extend those ideas, to show that not only the 
algorithms, but the architectural principles also extend to this other application domain.  

A key feature of the top level FBD is that the archive accepts from the sensor an input 
data stream which is processed, including perhaps event detection or data transformation, 
prior to storage.  If we think of the variety of both embedded and mobile sensors required 
to support remote exploration, the architectural analogy comes into focus.  The biggest 
difference between sensor input streams for the RE application, on the one hand, and for 
the IA, on the other, is that the sampling rate of the supported sensors is very different:  
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on the order of hours between co-located samples for an Earth Observing sensor 
supported by an IA, on the one hand; and perhaps 10 s to 100 s of Hz for embedded 
sensors in an RE scenario, on the other.  Hence, the focus of the intelligent algorithms 
will shift from change detection and pattern recognition within imagery to something 
much more like signal processing.  But the idea of a filter sitting on and examining an 
input stream, and extracting from it information concerning data quality, event detection, 
and higher-level summaries (i.e., metadata) is the same in both cases.  Indeed, some 
algorithms (SMOL, KARG_2) which have a difficult time fitting into KBS/IA use cases 
have a natural fit in RE scenarios.  

A second analogy derives from the distributed nature of the required processing.  In the 
KBS/IA use cases, we saw how peers in a network of co-operating IAs could share not 
only data but processing resources in an optimal way to satisfy user requests for products 
(VP) and DM services.  The analogy in a RE scenario is co-operating teams of semi-
autonomous sensors or other agents.  If we think, for example, of a team of a few (7 to 
20) mobile sensors communicating as they jointly perform a surveillance task, the need 
for distributed algorithms, optimized role assignments, and dynamic adjustment in 
response to uncertain events is clear.  

As just suggested, the control algorithms to optimize resource utilization governed by 
policy and priority also carries over into the RE domain.  Model Predictive Control and 
its associated modeling and state estimation requirements is equally applicable to both 
types of use case.  In the case of co-operating teams introduced above, important 
objective functions requiring near-real-time dynamic reoptimization include:  maximizing 
the value of collected information; maximizing use of available bandwidth back to a 
centralized controller; minimizing risk; assignment and reassignment of roles in response 
to agent failures or degradation.  

The monitoring functions in an IA  data quality assessment, event detection on the input 
data stream, state estimation and system status  also have a strong analogy in RE use 
cases.  Examples include:  health and status (e.g., habitat monitoring); detection and 
avoidance of incipient failure modes; predictive models for space and solar weather; and 
optimized route planning based on learned (i.e., modeled) terrain information.  

The conclusion from this brief discussion is that not only the IS/IDU research and 
resulting algorithms and technologies, but also the underlying architecture which unifies 
these components into a useful whole, extends in a natural way from the KBS/IA case 
studied in this paper to the KBS/RE case that is a high NASA priority. 
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4.  Top-Level Software Architecture and Specimen Design  

The purpose of this section is to briefly describe a candidat software architecture for a 
KBS/IA capable of efficiently implementing the functional requirements and use cases 
described in Sections 1 and 3 above.  Together with Section 2, then, this section forms a 
bridge to the next stage of research:  development of software prototypes and 
demonstrations.  

The material is organized as follows.  §4.1 introduces and motivates the selected 
approach by showing how it represents a natural evolution from, and enhancement of, 
current stand-alone archival technologies.  In §4.2, the key components are described.  In 
§4.3, the Service Oriented Architecture ideas described in Section 2 above are illustrated 
by means of a worked example based on KUMAR (see Use Case 3, §3.3 above).  This is 
further elaborated in §4.4 by showing how this design can be described using the Web 
Ontology Language, OWL.  

4.1 Top-Level Software Architecture and Specimen Design   

4.1.1 Block Diagram of the Top-Level Software Architecture  

This section discusses the top level software architecture of an intelligent archive (IA), 
which follows the concept of service oriented architecture as described in section 2.2.  
The discussion describes the evolution from a non-intelligent, traditional, and standalone 
archive to an intelligent archive which can either be centralized or distributed 
geographically.  

4.1.1.1 The architecture of traditional archive with no intelligent data understanding   

A traditional, standalone data archive architecture is shown in Figure 4.1.  In this 
architecture, the archive provides data it archived to the user through the interface 
provided by the archive.  The user usually first searches the archive catalog through the 
user interface and, upon finding desired data, requests and obtains data from archive.  
The three components, user interface, archived data, and the catalog, belong to the 
archive.  From the user point of view, interactions with the archive for obtaining data are 
made available by the archive itself. When new data arrive, they are directly ingested and 
cataloged in the archive catalog.   In such a traditional archive, the content and format of 
data available to users are fixed at the point in time when the data are ingested into the 
archive. 
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Data User

User interface provided by the data archive 
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Figure 4.1  -  Traditional archive architecture  

4.1.1.2 The architecture of standalone archives with limited intelligent data understanding  

Intelligent data understanding (IDU) can be built in to a traditional standalone data 
archives by imbedding IDU algorithms into the archive, as shown in Figure 4.2.  In this 
architecture, algorithms can be run on the archived data and the outputs of the algorithms 
are archived as derived data, usually high level data products, information or knowledge, 
and cataloged in the archive s catalog.  The algorithms built into the archive usually 
function independent of each other and work with only one or a few specific types of 
archived data.  The interfaces between individual algorithms and archived data are 
algorithm-specific.  There is no direct linkage between the algorithms and the catalog in 
the archive. In other words, users can access the IDU results archived in the archive 
storage but the algorithms themselves are not accessible to users.  Such archives can well 
serve communities of similar disciplines where user requirements can be largely met with 
simple IDU algorithms.  

Figure 4-2  Limited additional intelligence  
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more IDU algorithms and more content availability. Each connected archives are the 
members of this linked archive.  In order to connect multiple member archives, 
improvements in the user interface are necessary so that users can access multiple 
member archives by means of a single common user interface.  For example, if two such 
archives are connected, a common user interface that allows users to access storage and 
catalogs in both archives is desirable.  To further improve the functionality of the 
archives, it will be desirable to build a common interface between the archive storage and 
the catalogs so that only one common catalog is necessary in the linked archive (Figure 
4.3).  The common catalog, of course, can be populated by member archives, but the 
content and the interface to the catalogs must shield the user from unwanted detail, so 
that there is a single common logial catalog for the entire ensemble.   

Figure 4.3  Distributed Archives  

4.1.1.4  The service oriented software architecture of knowledge building system and 
intelligent archive  

Further improvements to multiple connected IAs can be achieved by building common 
interfaces not just between user and the archives but also between IDU algorithms and 
the archived data and between IDU algorithms and users.  Based on Service Oriented 
Architecture (SOA), a knowledge building system/intelligent archive (KBS/IA) can be 
built with fundamental changes to architectures shown in Figures 4.1, 4.2, and 4.3.  In 
such a new architecture individual archived data and individual algorithms are considered 
as completely independent components.  Individual algorithms, as well as the catalog, are 
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considered as services (Figure 4.4).  In Figure 4.4, the IA is also modeled as a component 
in a complete data/information/knowledge system that includes sensor system and 
different levels of data product generation systems.  Different interfaces in such a system 
are identified:  

(1) a common service interface through which user interacts with the IA to request 
different services, including catalog service, through which users interact with the 
KBS/IA; 

(2) a common storage interface through which services interact with archived storage; 

(3) a user storage request interface through which users obtain stored contents (this 
interface, however, can be integrated into the common service interface, as will be 
discussed later); 

(4) the feedback loop interface through which IA interacts with sensor system to 
perform things like sensor tasking and dynamic data collections; and 

(5) the sensor system including sensor and low level data production providing data 
to the archive.    

Figure 4.4  A Service Oriented Architecture for the KBS/IA  

KBS/IA 
User

Intelligent Archive

Archive 
Storage

Sensor system, 
low level data 

production 
system

Catalog services,
IDU Services,

General purpose 
services

Data/Information/
Knowledge System (1)

(2)

(3)

(4)(5)

KBS/IA 
User

Intelligent Archive

Archive 
Storage

Sensor system, 
low level data 

production 
system

Catalog services,
IDU Services,

General purpose 
services

Data/Information/
Knowledge System (1)

(2)

(3)

(4)(5)



Conceptual Specimen Architecture  38 

The direct user storage request interface, (3) in Figure 4.4, is useful only when content 
(data, information, knowledge) requested by users is directly available in the archived 
storage without any need of services, such as a complete granule of data.  For all other 
requests, going through this direct interface indicates that results of all services, including 
IA services and general purpose services, must be pushed back to the archive storage 
before users can obtain them.  This, however, is not necessary because in many cases the 
output of services may not need to be archived, especially for general data processing 
service such as spatial subset and data format conversion.  Further more, even in case of 
requesting a complete data granule, the user usually still needs to request the catalog 
service to search and locate the data granule first before he/she can actually request the 
data.  Therefore, this interface should be included in the more general common service 
interface, i.e., interface (1).    

4.1.1.5  Top-Level Software Architecture of KBS/IA and Specimen Design  

The service oriented architecture shown in Figure 4.4 is at abstract level.  A detailed top 
level architecture of a KBS/IA is given in Figure 4.5, where different components 
including the IA algorithms/service, archive storage, and catalog are shown.  Figure 4.6 is 
yet a more detailed diagram of a KBS/IA in the context of specific IDU algorithms, i.e., 
Vipin Kumar s time series, clustering, and association algorithms ([16]; [19];  [23]; [17]).  
It also serves as a specimen design of the software architecture.  Service/data flow 
sequences and input/output contents are identified in this diagram with directional links 
between different boxes.  The components, interfaces, and flows are discussed in sections 
4.2 and 4.3.  

Figure 4.5  Detailed Top Level Software Architecture for KBS/IA 
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Figure 4.6  Detailed KBS/IA Architecture showing KUMAR flows  
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algorithm/service catalog, the client can request the service.  If the requested service 
includes interactive parameters, the client will provide appropriate interfaces to the 
user to specify these parameters. 

3) interactive stored and virtual product request: upon the desired stored D/I/K products 
or virtual products being found through the catalogs, the client can request the 
products.  If a requested product is a virtual product, the related service or service 
chain will be invoked to materialize the virtual product. 

4) interactive workflow editing: if the product the client requests is neither available in 
the stored D/I/K catalog nor in virtual product catalog, the user may interactively edit 
a workflow for the desired product.  The client provides a graphical interface for the 
user to perform such editing.     

In addition to the above four major components, other functionalities, such as data 
manipulation and project management, can also be added to the client but these value-
added  components should not be considered as inherent to the KBS/IA system.     

In order for the client to interact with the KBS/IA s services, a common service 
environment, which is a set of standard interfaces within the KBS/IA system, is required.  
Depending on the scope of the KBS/IA, the standard interfaces can range from discipline- 
or community-specific to open web services oriented.   

4.2.2 IDU algorithm and service layer  

The algorithms and services in this layer can be grouped into four categories/components: 
1) a system and workflow management component which performs system status 
monitoring, plans, constructs and manages workflows to produce new D/I/K products; 2) 
an IDU algorithm component which provides various IDU algorithms to stored and 
ingesting data; 3) a science model component which executing other scientific models 
such as atmospheric and hydrologic models; and 4) a general data service component 
which provides various general purpose data manipulation services such as subsetting, 
map reprojection, and format conversion.  Among the four components, only the first two 
are necessary for a KBS/IA system while the last two are more general purpose services 
and thus may or may not exist in a KBS/IA system.   

4.2.2.1 IDU algorithms  

The IDU algorithm is the core component of the KBS/IA system, although other 
components, such as catalog and workflow control, are also necessary.  Each IDU 
algorithm is implemented as one or more services (or agents, modules) that can be 
chained together to perform a specific IDU task.  Ontology descriptions, such as 
input/output types, precondition, and consequences, are provided in service profile for 
each service/algorithm.  Ontology descriptions also include knowledge, inference engine, 
relationships, etc.  Depending on the nature of the IDU algorithms, there may or may not 
be interfaces between algorithms/services and the archive users.  For example, interfaces 
are needed for certain supervised classifications in which interactive parameterizations 
are required, while no interface is required for some unsupervised clustering algorithm.  
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Algorithm interfaces are useful for experienced users who have domain knowledge and 
are familiar with the algorithms.  For general users of the archive, who are interested in 
finding and obtaining D/I/K but are not specifically interested in how the D/I/K are 
derived, the algorithm interfaces are less important.    

4.2.2.2 System and workflow control  

The system and workflow control service component contains various services for 
monitoring, configuring, managing, and tasking software/hardware/data resources and for 
planning, constructing, managing and executing workflows.  In most case, workflow 
construction is an automated process in which services are chained based on the user 
requirement and service descriptions.  For example, a simple event detection algorithm of 
vegetation dynamics may use archived time series of a vegetation index as baseline to 
detect sudden increase/decrease in current vegetation activities.  The workflow of this 
service can be automatically constructed based on the ontology descriptions of the 
vegetation index computation equation (e.g., ratio of near infrared reflectance to red 
reflectance), the index baseline computation equation (e.g., precedent 12-month values, 
precedent three-year averages), and the archived time series data.  When new data is 
ingested into the archive system, the algorithm calculates the vegetation index and 
compares it with the baseline index value (which itself is time-variant as new data is 
ingested).  If the difference is larger than a predefined threshold, a high/low anomaly 
alarm is then issued.  The result of such event detection can in turn activate next step in 
the KBS/IA system, such as sensor re-tasking, especially in emergency management 
scenario (e.g., wild fire).   While automatic workflow construction and execution is 
important in a KBS/IA system, an experienced user of the algorithm may want to 
manually construct the workflow and submit it to the system.  Thus, interfaces between 
individual IDU algorithms and users are also required.   

4.2.2.3 Other algorithms and science models  

This component contains algorithms and science models that are not belong to the IDU 
algorithms.  These include, for example, algorithm of calculating fraction of 
photosynthetically active radiation absorbed by vegetation (fPAR) and models of 
deriving net primary production, potential soil erosion, and wild fire risk index.  These 
algorithms and models are not considered as necessary components of a KBS/IA system 
but they are associated, either directly or indirectly, with the IDU algorithms.  On one 
hand, the output of these algorithms/models (e.g., fPAR) can serve as input of IDU 
algorithms.  On the other hand, the output of IDU algorithms (e.g., data quality, 
clustering, fractal dimensions) can also be used as input as these algorithms/models.  

4.2.2.4 General data service  

The general data service component contains services that may be required for general 
data processing and are not specific to any particular IDU algorithm.  These may include 
such services as spatial, temporal, and parameter subsetting, georectification and 
reprojection, data format conversion, and so on.  Although this is not a necessary 
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component of a KBS/IA system, the services provided in this component is often 
indispensable for an archive system.  

4.2.3 Catalog  

The catalog together with the system and workflow control system composes a special 
kind of service for a KBS/IA system, i.e., the registry service.  This service provides 
necessary information for the KBS/IA clients to search, find, access, and obtain 
algorithms and services available from the system.  It also enables algorithms/services 
implemented in the system to announce and publish themselves.  The catalog provides 
three types of information: algorithm/service catalog, stored I/D/K product catalog, and 
virtual I/D/K product catalog. The algorithm/service catalog contains information about 
available services in the KBS/IA system, includes IDU and non-IDU algorithms, science 
models, and other general purpose data services.  The stored I/D/K product catalog 
contains information about the products actually stored in the archive storage.  These 
products are readily available to users without needing further processing.  The virtual 
product catalog contains information about products that can readily be produced but are 
not materialized and stored in the archive storage.  The virtual products are actually 
workflows that can, upon being executed, produce real products.   

4.2.4 Archive Storage  

This archive storage includes D/I/K which is kept in the storage area of an archive.  The 
D/I/K included in this area can be accessed to by clients, algorithms/services, and catalog 
of the KBS/IA.  For any specific IDU algorithm, the content in the archive storage can be 
distinguished as an input component and an output component.  The input to an IDU 
algorithm is usually data or information and the output is usually information or 
knowledge. For different algorithms, the output of one can be the input of another.  For 
example, the input to a spatial correlation data mining algorithm may be the output of an 
image segmentation algorithm or data clustering algorithm.  The two arrows in the 
archive D/I/K store  in figure 4.5 are examples of this input/output relationship.  The 

content in the archive storage is accessed to by the catalog and various 
algorithms/services (see the two block arrows linking the storage box and the algorithm 
and the catalog boxes).  A set of standard interface protocols are required to perform 
these accesses.  Similar to the common service environment discussed in section 4.2.1, 
the scope of standardization  of storage access can range from discipline- or 
community-specific to a wide open environment such as the entire internet.  

4.3 Service and Data Flows  

The service and data flows of IDU algorithms in a KBS/IA system is shown in figure 4.6, 
by taking Vipin Kumar s algorithms as examples.  In this diagram, the service flows are 
indicated using green arrows.  The input data flows are indicated using red arrows.  The 
output data flows are indicated using the pink arrows.  The linkage between the IDU 
algorithms and the algorithm knowledge base are shown in blue arrows.  The dotted 
orange arrows indicate how the output of one IDU algorithm becomes the input of 
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another IDU algorithm.  The block arrows among different components are still kept in 
this diagram to show the interfaces among these components.  

The main event/data flows include the followings:  

1) A KBS/IA system user requests Kumar s algorithms through the system s client 
interface. 

2) The client submits the user s information to system control service to conduct 
user authentication and authorization. 

3) The workflow planner communicates with the algorithm catalog in the system 
catalog to find the specific IDU algorithm and the service profile of the algorithm, 
including precondition, input/output, and consequences of executing the 
algorithm. 

4) The workflow planner communicates with the storage catalog in the system 
catalog to check the status of required input contents. 

5) The workflow planner checks with the system status monitoring service and 
system resources managements services to learn the system status and resources 
availability in order to perform workflow construction. 

6) The workflow construction service constructs an executable workflow required to 
complete the requested algorithm.  The workflow construction service can also 
interact with the client to allow the requesting user to edit and construct the 
workflow. 

7) The workflow execution service talks with system status and resources 
management to execute the workflow at optimum system status. 

8) The IDU algorithm is invoked and executed. 
9) The necessary input D/I/K to the algorithm is obtained from the archive storage or 

from the system ingesting data.  
10) The output I/K of the algorithm is stored to the archive storage and/or returned to 

the request users through the client interface. 
11) The catalog is updated with the latest addition to the archive store. 
12)  The outcome of the algorithm may also result in requests to observation system 

such as the sensor re-tasking due to the detection of a severe ecosystem 
disturbance (e.g., wild fire).  This, in turn, may result in actions in the low level 
data processing system, the ingestion of new data into the archive store, and the 
update of the archive store catalog.    

4.4 OWL-S Examples for Kumar s Algorithms  

The Kumar s algorithms shown in figure 4.6 can be described using Web Ontology 
Language for Service (OWL-S) ([21]; [20]).  The followings three OWL-S examples 
used to describe the algorithms: 1) top level service definition, which includes the 
references to service profile, service process model, and service process grounding; 2) 
service profile, which includes information of the service provider, service function 
description, service category, and service parameters; and 3) service process, which 
describes a service process and control model such as inputs, outputs, preconditions, 
effects, and component sub-processes. 
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4.4.1 Top level service definition  

<?xml version="1.0" encoding="ISO-8859-1" ?>  
  <!DOCTYPE uridef (View Source for full doctype...)>  
  <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
           xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
           xmlns:owl="http://www.w3.org/2002/07/owl#"  
           xmlns:xsd="http://www.w3.org/2001/XMLSchema#"  
           xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#"  
           xmlns="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl#"> 
    <owl:Ontology rdf:about=""> 
      <owl:versionInfo>$Id: Kumar__Pattern_Service.owl,v 1.0 2004/10/02 02:10:14 martin Exp $</owl:versionInfo>  
      <rdfs:comment>This ontology represents the Kumar's pattern service description for the Intellignet Archive 
example.</rdfs:comment>  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Service.owl" />  
      <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl" />  
      <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl" />  
    </owl:Ontology> 
    <service:Service rdf:ID="Kumar_Pattern_Service"> 
     <!--  Reference to the Profile -->  
     <service:presents rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Profile.owl#Profile_Kumar_Pattern" />  
     <!--  Reference to the Process Model -->  
     <service:describedBy rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel" />  
     <!--  Reference to the Grounding -->  
     <service:supports rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Grounding.owl#Grounding_Kumar_Pattern" />  
    </service:Service> 
  </rdf:RDF>  

4.4.2 Service profile   

<?xml version="1.0" encoding="ISO-8859-1" ?>  
  <!DOCTYPE uridef (View Source for full doctype...)>  
  <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
           xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
           xmlns:owl="http://www.w3.org/2002/07/owl#"  
           xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#"  
           xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"  
           xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"  
           xmlns:actor="http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"  
           xmlns:addParam="http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"  
           xmlns:profileHierarchy="http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"  
           xmlns="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl#"> 
    <owl:Ontology rdf:about=""> 
      <owl:versionInfo>$Id: Kumar_Profile.owl,v 1.0 2004/10/3 02:10:14 martin Exp $</owl:versionInfo>  
      <rdfs:comment>Kumar's Association Example for OWL-S Profile description</rdfs:comment>  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Service.owl" />  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl" />  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/ActorDefault.owl" />  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl" />  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Process.owl" />  
      <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl" />  
      <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl" />  
      <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl" />  
    </owl:Ontology> 
    <!--  ################################################################### -->  
    <!--  # Instance Definition of Kumar's pattern service  #-->  
    <!--  ################################################################### -->  
    <profileHierarchy:Kumar_Pattern rdf:ID="Profile_Kumar_Pattern"> 
      <!--  reference to the service specification -->  

http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://www.w3.org/2000/01/rdf-schema#"
http://www.w3.org/2002/07/owl#"
http://www.w3.org/2001/XMLSchema#"
http://www.daml.org/services/owl-s/1.0/Service.owl#"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl#">
http://www.daml.org/services/owl-s/1.0/Service.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl"
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Profile.owl#Profile_Kumar_Pattern"
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel"
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Grounding.owl#Grounding_Kumar_Pattern"
http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://www.w3.org/2000/01/rdf-schema#"
http://www.w3.org/2002/07/owl#"
http://www.daml.org/services/owl-s/1.0/Service.owl#"
http://www.daml.org/services/owl-s/1.0/Process.owl#"
http://www.daml.org/services/owl-s/1.0/Profile.owl#"
http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"
http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"
http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl#">
http://www.daml.org/services/owl-s/1.0/Service.owl"
http://www.daml.org/services/owl-s/1.0/Profile.owl"
http://www.daml.org/services/owl-s/1.0/ActorDefault.owl"
http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl"
http://www.daml.org/services/owl-s/1.0/Process.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl"
http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl"


Conceptual Specimen Architecture  45 

      <service:presentedBy rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Service.owl#Kumar_Pattern_Service" />  
      <!--  reference to the process model specification -->  
      <profile:has_process rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel" />  
      <profile:serviceName>Kumar_Pattern_Service</profile:serviceName>  
      <profile:textDescription>This service is to find spatio-temporal patterns in Earth science data. 
         This typically involves associations, clusters, predictive models and trends</profile:textDescription>   

      <profile:contactInformation> 
        <actor:Actor rdf:ID="Kumar_Pattern"> 
          <actor:name>Lab for Advanced Information Technology and Standards</actor:name>  
          <actor:title>Operator</actor:title>  
          <actor:phone>301 552 3829</actor:phone>  
          <actor:fax>301 552 9671</actor:fax>  
          <actor:email>wyang1@gmu.edu</actor:email>  
          <actor:physicalAddress>9801 Greenbelt Rd. Suit 316-317, Lanham, MD, 20706</actor:physicalAddress>  
          <actor:webURL>http://ws.laits.gmu.edu/services/Kumar_Pattern.html</actor:webURL>  
        </actor:Actor> 
      </profile:contactInformation> 
      <profile:contactInformation> 
        <actor:Actor rdf:ID="IDU-information"> 
          <actor:name>Wenli Yang</actor:name>  
          <actor:title>Principal Scientist</actor:title>  
          <actor:phone>301 552 3829</actor:phone>  
          <actor:fax>301 552 9671</actor:fax>  
          <actor:email>wyang1@gmu.edu</actor:email>  
          <actor:physicalAddress>9801 Greenbelt Rd. Suit 316-317, Lanham, MD, 20706</actor:physicalAddress>  
          <actor:webURL>http://ws.laits.gmu.edu/services/Kumar_Pattern.html</actor:webURL>  
        </actor:Actor> 
      </profile:contactInformation>  

      <!--  Specification of the service category using NAICS -->  
      <profile:serviceCategory> 
        <addParam:ISO19119 rdf:ID="ISO19119-category"> 
          <profile:value>Data Mining</profile:value>  
          <profile:code>****</profile:code>  
        </addParam:ISO19119> 
      </profile:serviceCategory>  

      <!--  Descriptions of IOPEs -->  
      <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#fPAR" />  
      <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#SST" />  
      <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#NPP" />  
      <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Climate_Indices" />  
      <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Land_Cover" />  
      <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Association_Rules" />  
    </profileHierarchy:Kumar_Pattern> 
  </rdf:RDF>  

4.4.3 Service process  

<?xml version='1.0' encoding='ISO-8859-1'?> 
<!DOCTYPE uridef[ ]> 
       

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
         xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
         xmlns:owl="http://www.w3.org/2002/07/owl#"  
         xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#"  
         xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"  
         xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"  

http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Service.owl#Kumar_Pattern_Service"
file:has_process
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel"
file:serviceName>Kumar_Pattern_Service</profile:serviceName>
file:textDescription>This
file:textDescription>
file:contactInformation>
http://ws.laits.gmu.edu/services/Kumar_Pattern.html</actor:webURL>
file:contactInformation>
file:contactInformation>
file:contactInformation>
file:serviceCategory>
file:value>Data
file:code>****</profile:code>
file:serviceCategory>
file:hasInput
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#fPAR"
file:hasInput
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#SST"
file:hasInput
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#NPP"
file:hasInput
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Climate_Indices"
file:hasInput
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Land_Cover"
file:hasInput
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Association_Rules"
http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://www.w3.org/2000/01/rdf-schema#"
http://www.w3.org/2002/07/owl#"
http://www.daml.org/services/owl-s/1.0/Service.owl#"
http://www.daml.org/services/owl-s/1.0/Process.owl#"
http://www.daml.org/services/owl-s/1.0/Profile.owl#"
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         xmlns:actor="http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"  
         xmlns:addParam="http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"  
         xmlns:profileHierarchy="http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"  
         xmlns:concepts = "http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/concepts.owl#" 
         xmlns="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#">   

  <owl:Ontology rdf:about=""> 
    <owl:versionInfo>$Id: Kumar_Process.owl,v 1.0 2004/10/03 23:06:47 martin Exp $</owl:versionInfo> 
    <rdfs:comment> Kumar's pattern Example for OWL-S Process Model</rdfs:comment> 
    <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Service.owl" />  
    <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl" />  
    <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Process.owl" />  
    <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl" />  
  </owl:Ontology>  

  <!-- ################################################################### --> 
  <!-- Instance Definition of Kumar's Pattern Process Model --> 
  <process:ProcessModel rdf:ID="Kumar_Pattern_ProcessModel"> 
    <process:hasProcess rdf:resource="#Kumar_Process" /> 
    <service:describes rdf:resource="#Kumar_Pattern_Service"/> 
  </process:ProcessModel>   

  <!-- ########################################################################## --> 
  <!-- Definition of top level Process as a composite process -->   

 

<process:CompositeProcess rdf:ID="Kumar_Process"> 
    <rdfs:label> This is the top level process for Kumar's pattern </rdfs:label> 
    <process:composedOf> 
       <process:Sequence> 
         <process:components rdf:parseType="Collection"> 
           <process:AtomicProcess rdf:about="#Ecosystem_Disturbance> 

 

   <process:AtomicProcess rdf:about="#SNN_Clustering"/> 

 

   <process:CompositeProcess rdf:about="#Correlation_Association/> 

 

</process:components>  
      </process:Sequence> 
   </process:composedOf> 

 

</process:CompositeProcess>     

  <!-- ########################################################################## --> 
  <!-- Ecosystem disturbance (ATOMIC)--> 
  <process:AtomicProcess rdf:ID="Ecosystem_Disturbance"> 
     <process:hasInput rdf:resource="#fPAR"/> 
     <process:hasOutput rdf:resource="#fPAR_Anomalies_Out"/> 
  </process:AtomicProcess> 
  <process:Input rdf:ID="fPAR">   
     <process:parameterType rdf:resource="&concepts;#fPAR"/> 
  </process:Input> 
  <process:UnConditionalOutput rdf:ID="fPAR_Anomalies_Out"> 
    <process:parameterType rdf:resource="&concepts;#fPAR_Anomalies_Out"/> 
  </process:UnConditionalOutput>  

  <!-- ########################################################################## --> 
  <!-- SNN Clustering (ATOMIC)--> 
  <process:AtomicProcess rdf:ID="SNN_Clustering"> 
     <process:hasInput rdf:resource="#SST"/> 
     <process:hasInput rdf:resource="#NPP"/> 
     <process:hasInput rdf:resource="#Climate_Indices"/> 
     <process:hasInput rdf:resource="#Land_Cover"/> 
     <process:hasOutput rdf:resource="#SNN_Clustering_Out"/> 
  </process:AtomicProcess>  
  <process:Input rdf:ID="SST"> 
    <process:parameterType rdf:resource="&concepts;#SST"/> 
  </process:Input> 
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  <process:Input rdf:ID="NPP"> 
    <process:parameterType rdf:resource="&concepts;#NPP"/> 
  </process:Input> 
  <process:Input rdf:ID="Climate_Indices"> 
    <process:parameterType rdf:resource="&concepts;#Climate_Indices"/> 
  </process:Input> 
  <process:Input rdf:ID="Land_Cover"> 
    <process:parameterType rdf:resource="&concepts;#Land_Cover"/> 
  </process:Input> 
  <process:UnConditionalOutput rdf:ID="SST_Clustering_Out"> 
    <process:parameterType rdf:resource="&concepts;#SST_Clustering_Out"/> 
  </process:UnConditionalOutput>   

  <!-- ########################################################################## --> 
  <!-- Correlation & Association (ATOMIC) --> 
  <process:AtomicProcess rdf:ID="Correlation_Association"> 
    <process:hasInput rdf:resource="#fPAR_Anomalies_Out"/> 
    <process:hasInput rdf:resource="#SST_Clustering_Out"/> 
    <process:hasInput rdf:resource="#Association_Rules"/> 
    <process:hasOutput rdf:resource="#Association_Out"/> 
  </process:AtomicProcess> 
  <process:Input rdf:ID="Association_Rules"> 
    <process:parameterType rdf:resource="&concepts;#Association_Rules"/> 
  </process:Input> 
  <process:UnConditionalOutput rdf:ID="Association_Out"> 
    <process:parameterType rdf:resource="&concepts;#Association_Out"/> 
  </process:UnConditionalOutput> 
</rdf:RDF>   
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5.  Conclusion  

The work described in this paper represents both the capstone of work that has been 
ongoing for some time as well as a transition to the next phase of the research:  
prototyping and demonstration.  As a capstone document, it clearly shows how the 
IS/IDU research and development projects support the key functional requirements for an 
intelligent archive as part of a knowledge building system.  The paper also shows that the 
necessary critical technology infrastructure is in place; and that reasonable achievable 
software implementations can be built to support and use the algorithms, on the one hand, 
and to fully utilize the capabilities provided by existing infrastructure, on the other.  The 
Use Case discussions wrap this together in a compelling way, showing how a variety of 
powerful and very useful capabilities and concepts of operation can be supported by the 
envisioned IA conceptual specimen architecture.  

With this as a basis, the next step appears to be to show that this vision can be realized in 
practice.  By prototyping and demonstrating selected challenging sub-functions using 
IS/IDU algorithms on real data, it will be possible to make a strong case that the next 
generation of intelligent archive technology is achievable, and will provide quantum 
levels of improvement over current capabilities at acceptable cost and risk. 
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